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The planforms and onset of convection with a 
temperature-dependent viscosity 

By DAVID B. WHITE 
Schlumberger Cambridge Research, P.O. Box 153, Cambridge CB3 OHG, UK 

(Received 11 May 1983 and in revised form 1 November 1987) 

An experimental investigation was made of convection in a fluid with a strongly 
temperature-dependent viscosity. The determination of the critical Rayleigh 
number, R,, using the appearance of convection to define onset, was complicated by 
the occurrence of subcritical instabilities initiated by horizontal temperature 
gradients a t  the side boundaries. The increase in R, over the expected value was less 
than predicted by linear theory, probably owing to the effect of finite conductivity 
boundaries and the temperature dependence of other fluid properties. 

The stability of various convective planforms was studied as a function of 
Rayleigh number, wavenumber and viscosity variation using controllcd initial 
conditions to specify the wavenumber and pattern, Rayleigh numbers of up to 63000 
and viscosity variations of up to 1000. In addition to the rolls and hexagons seen in 
constant- and weakly temperature-dependent-viscosity fluids, a new planform of 
squares was observed at  large viscosity variations. 

Experiments with viscosity variations of 50 and 1000 showed that hexagons and 
squares were stable a t  Rayleigh numbers less than 25000 over a limited range of 
wavenumbers, which was shifted to higher values with increasing viscosity variation. 
Temperature profiles through the layer revealed that this shift in wavenumber was 
associated with the development of a thick, stagnant, cold boundary layer which 
reduced the effective depth of the layer. 

Experiments with a fixed wavenumber showed that rolls were unstable a t  all 
Rayleigh numbers for a viscosity contrast greater than 40, whereas squares did not 
become stable until the viscosity contrast exceeded 6. At low viscosity variations and 
high Rayleigh numbers rolls became unstable to a bimodal pattern, but at high 
viscosity variations and a Rayleigh number of 25000 squares broke down into the 
spoke pattern, a convective flow not observed until Rayleigh numbers of around 
100000 in a constant-viscosity fluid. 

1. Introduction 
To understand convection in a fluid with a temperature-dependent viscosity we 

need to study the onset of convection, the planform of the convective motions and 
their scale, the thermal structure and the heat flux transported through the layer. 
Such studies are important in furthering our understanding of convection in the 
Earth’s mantle and its effect upon the scale of plate motions and heat flow, as the 
deformation in the mantle is known to be a strong function of temperature. The 
properties of convection in a constant-viscosity fluid are now fairly well understood, 
and from this basis we can determine the modifications to the behaviour of the flow 
due to a variable viscosity. 

There have been many studies, both theoretical and experimental, to determine 
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the planform of convection in a constant-viscosity fluid heated from below. Among 
the key papers is Busse’s (1967a) work on the stability of planforms for convection 
up to 14 R,, where R, is the critical Rayleigh number, using numerical methods 
which found that two-dimensional rolls were unstable to infinitesimal three- 
dimensional disturbances except within a closed region commonly called the ‘ Busse 
balloon’. Above a Rayleigh number of 22600 all two-dimensional rolls we unstable 
and a transition to three-dimensional flow occurred. Busse & Whitehead (1971), 
using techniques developed by Chen & Whitehead (1968), performed laboratory 
experiments showing very good agreement with the theoretical predictions. 

Many experiments have been performed in the past to measure heat flux as a 
function of the Rayleigh number, but with a variable viscosity there is no unique 
viscosity with which to define the Rayleigh number. Booker (1976) made heat-flux 
measurements with convection in Polybutene oil and found that, by defining the 
Rayleigh number using the fluid properties a t  the mean of the boundary 
temperatures, the Nusselt number-Rayleigh number relationship was very similar to 
that for a constant-viscosity fluid. Wray (1978) and Richard, Nataf & Daley (1983), 
using Lyle’s Golden Syrup, reached the same conclusion, which suggests the 
following definition of the Rayleigh number for the experiments : 

gaATd3 R=- 

where g is the acceleration due to gravity, a is the coefficient of thermal expansion, 
AT is the temperature drop across the layer, d is the layer depth, K is the thermal 
diffusivity, and v is the kinematic viscosity a t  the mean of the boundary 
temperatures. 

Palm (1960) showed that a variable-viscosity fluid could produce a hexagonal 
planform, and Busse’s (1967 b )  analysis of a weakly temperature-dependent viscosity 
predicted the existence of subcritical, finite-amplitude hexagons and hysteresis in 
their transition to rolls a t  a higher Rayleigh number. This was experimentally 
verified by Somerscales & Dougherty (1970) and Hoard Robertson & Acrivos (1970). 
Wray (1978) found irregular polygons in all his variable-viscosity flows with 
Rayleigh numbers below 20000. Richter (1978) showed that the stability of rolls with 
viscosity variations between 2 and 6 were very similar to those for a uniform-viscosity 
fluid, the only differences being a reduction in the Rayleigh number, R,, a t  which the 
transition to bimodal flow occurred and the existence of stable hexagons at low 
Rayleigh numbers and large viscosity variations. He found no new planforms. In  
some recent finite-amplitude work Oliver & Booker (1983) observed hexagons and a 
new planform of squares. However, their determination of the stability of different 
planforms was affected by the circular geometry of their apparatus and the spatial 
irregularity of the convection cells as no regular pattern could be induced. 

ITsing linear theory Wray (1978) showed that, for a fluid with an exponential 
variation, R, should initially increase with increasing viscosity variation. Stengel, 
Oliver & Booker (1982) experimentally determined the onset of convection in a 
variable-viscosity fluid by measuring the heat flux and found an increase in R, with 
increasing viscosity variation. The infinitesimal amplitude state was found to be not 
steady, and convection grew to finite amplitude at R, as seen by a jump in the 
Nusselt number. The thermal structure and heat flux of convective flows with 
viscosity variations up to lo5 have been studied by Richter et al. (1983), whose work 
forms an important complimentary study to this paper. Their temperature profiles 
show the development of a thick stagnant boundary layer, a result confirmed in $ 7 .  

KV 
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Additionally their determination of the Nusselt number for Rayleigh numbers near 
R, in flows viscosity variations of 3 x lo3 and - lo5, revealed the existence of 
subcritical, finite-amplitude convection. 

In  experimental design, the requirements for accurate measurements of heat flux 
make visualization of the flow very difficult as the layer can only be observed from 
the edge. Conversely, if visualization is simple, then heat-flux measurements cannot 
be accurately made. I n  this paper the latter route has been taken and experimental 
apparatus and techniques similar to Busse & Whitehead (1971) employed, so that 
various pianforms can be initiated and their stability determined. 

The initial experiments with random initial conditions described in $3  showed that 
the experimental determination of R, is complicated by the presence of horizontal 
temperature gradients which drive a flow that resonates with the subcritical state 
and starts convection below R,. If this effect is accounted for then R, initially 
increased with increasing viscosity variation but not as rapidly as predicted by linear 
theory. The planform experiments in $35 and 6 showed that squares are a stable 
planform with a stability region similar to the Busse balloon for rolls, although it is 
increasingly shifted to larger wavenumber, k ,  with increasing viscosity variation. 
Hexagons were stable within a smaller area of (R, k)-space but again shifted to larger 
E with increasing viscosity variation. I n  $ 8 experiments varying the viscosity with 
a fixed k revealed squares to be unstable a t  all Rayleigh numbers below a viscosity 
variation of 6. 

2. The apparatus and procedure 
The apparatus allows the establishment of controlled initial conditions and the 

subsequent observation of the convective planform. The fluid layer was bounded 
above and beiow by 6 mm float-glass manifolds, each consisting of two parallel glass 
plates separated by a 6 mm gap forming a water channel (figure 1) .  The temperatures 
of the horizontal boundaries of the fluid layer were set by the flow of thermostated 
water through these channels. The layer depth was fixed by removable spacers 
machined to 4 x mm and depths of 5 and 6 cm were employed compared with 
the 1 m x 95 cm horizontal dimension of the tank. Power was supplied to the hot- 
water bath by a 1500 W thermistor-controlled heater with an additional back-up 
heater with a variable power of 0-1000 W. Two different refrigeration units were 
available with dissipation rates of 1500 or 2500 W. 

The apparatus was levelled to 1 in lo4. As any variation in depth causes a change 
in the Rayleigh number, the bending of the glass plates bounding the layer was 
minimized by maintaining the correct hydrostatic head to within 1 mm. The water- 
bath temperatures were kept constant to within k0.02 "C during the 24 h of a 
typical experiment. The flow in the two manifolds was in opposite directions in order 
to maintain a constant temperature difference across the layer. The temperature 
difference between the inlet and outlet was usually less than 0.4 OC, compared with 
a typical vertical temperature difference of 40 "C, but in extreme cases it was as large 
as 0.7 "C. The Rayleigh numbers quoted were calculated using the fluid properties a t  
the mean of the inlet and outlet water temperatures. A higher flow rate of water 
would have reduced the horizontal temperature gradient but the differential pressure 
across the channel would produce greater bending of the glass. 

The water temperatures were measured using thermistors in the inlets and outlets 
of the manifolds which were calibrated to  0.01 "C against thc thermometer that 
was later used in the viscosity measurements of the syrup. To find the boundary 
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FIGURE 1 ,  A schematic diagram of the apparatus. The fluid layer was heated from below and cooled 
from above by water supplied to the two manifolds from the constant-temperature water baths. 
The return flow was trimmed by the ball valve to exactly equal the input and thus maintain the 
water levels constant. The water channels were covered with polypropylene balls to reduce 
evaporation. 

TPC) 
FIGURE 2. The viscosity of Lyle’s Golden Syrup as a function of temperature. The curve was 

calculated from expression (1). 

temperatures of the fluid from the water-bath temperatures a correction had to be 
made for the temperature drop across the glass. This correction was calculated using 
an experimentally determined Nusselt-number relationship for syrup, N u  = 0.1775 
R0.2775, obtained by Wray (1978). The largest correction was about 10% of the 
temperature difference between the baths. The viscosity variation, v,,,,,/v,~~, was 
defined as the ratio of the viscosity a t  the calculated cold boundary temperature to 
that a t  the hot boundary temperature. The boundary temperatures were measured, 
in the conductive state, using a set of six thermistors attached to each boundary and 
agreed to within 0.5 % of the calculated values. When the fluid is convecting the error 
in the calculated temperature difference across the glass will be mainly from errors 
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in the Nusselt-number relationship and amount to a few per cent. The viscosity of 
the syrup was known to better than 1 %  but there are larger uncertainties in the 
values of a and ( I p ,  the specific heat' capacity, which combine to give a possible error 
of about 1 0 n ! n  in the absolute value of the Rayleigh number. The rclative values of 
the Rayleigh number arc acmrate to about 5%. 

To avoid possible edge effects due to non-uniform temperature gradients, a region 
of fluid was isolated from the edges by an 80 x 85 ern wall of Perspex 0.5 cm thick, 
its conductivity being similar to that of syrup. This isolation rectangle had foam on 
both edges which compressed to give a good fit between the upper and lower 
manifolds with a depth set by the accurately machined spacers. 

Lyle's Golden Syrup has a strongly temperature-dependent Newtonian viscosity 
(figure 2).  The viscosity was determined, to an accuracy of better than 1 YO, between 
- 10" and 65 "C using a falling-ball viscometer with corrections for a finite-sized 
cylinder. Details of the viscosity are from White (1981) and the other physical 
properties, taken from Wray (1978), are as follows : 

a = 4.33 x lop4 "C-l (accurate to - 1 %) ; 

pzo = 1438 kg m-3 (accurate to four significant figures) ; 

C, = 3.02 x lo3 J kg-' "C-' (accurate to a few %) ; 

K = 0.3158+ 1.8431 x lOP3T W m-l "C; 

where T is the temperature in "C. 
The thermal conductivity K was measured a t  the Ministry of Defence, Explosives 

Research and Development Establishment, using an industrial co-axial cylinder with 
an accuracy of 2 %. However, measurements by Richter et a1 (1983) suggests that 
this value may be in error and that it should be 0.353+ 1.0 x 10-5T W m-l "C-l. The 
Rayleigh numbers quoted in this paper use the former value. The viscosity 
mc:asuremcnts were fitted to a curve of the form 

p = 4" exp Pa Y.  

A typical curve had coefficients ?lo = 5.37996 x lo-' Pa s; A = 4.04028 x 
B = 3.93566 x 

The viscosity of each batch of syrup used was checked, and all were within 5 % of 
each other. During viscosity measurements it was observed that the syrup began to 
degrade above 60 "C. Although this degradation made no difference to the viscosity, 
it was used as an upper limit for the hot boundary temperature in the experiments. 
Another problem occurred after a few months when sugar crystals formed and were 
concentrated under rising regions to produce very dark spots on some of the 
photographs. The syrup was then changed, although the viscosity of a sample of 
syrup that had been in the tank for four months was found to be within 0.3 YO of its 
original value. The Prandtl number, U / K ,  is around lo5 for the mean temperatures 
used, but varies between 2 x lo7 a t  the cold boundary and 5 x lo3 a t  the hot 
boundary. 

Experiments were carried out with a fixed viscosity variation a t  different Rayleigh 
numbers. This fixed viscosity variation was achieved by varying the mean 
temperature, and thus the mean viscosity of the layer, with a small alteration in AT 
to allow for the fact that the temperature-viscosity curve is super-exponential. This 
procedure is in contrast with the methods of Richter (1978), who fixed the mean 

T-' ; C = 7.08166 x lo-' T-'. 

I 1 l . V  1 0 1  
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temperature and altered the Rayleigh number by changing AT, thus also changing 
the viscosity variation. 

The convection pattern was visualized using the standard shadowgraph technique. 
Light from a 250 W slide projector was passed though a 6 mm hole then bounced off 
one large mirror, through the layer, off a second mirror and on to a frosted screen 
with a total light path of about 4 m. Light passing through a cold, sinking region is 
focused, producing a bright line on the screen from a sinking sheet or a bright spot 
from a sinking plume. Light traversing a hot, rising region is defocused to produce 
dark lines or spots on the screen. The resulting picture is a pattern of light and dark 
lines that may intersect, as the shadowgraph is a complicated vertical integration of 
the temperature field of the layer. 

To induce convection with the desired pattern the method of Chen & Whitehead 
(1968) was used. The layer was held in a subcritical condition for about 15 h 
( d 2 / K  - 7 h) and then a mask of the desired pattern and wavelength was placed over 
the layer. Light from eight 300 W heat lamps was reflected off the top mirror, down 
through the mask for a further hour, producing periodic temperature perturbations 
of the desired pattern in the fluid. The water-bath temperatures were then changed 
a t  equal rates of 0.2 "C/min until their final values were achieved. It is important to  
maintain the mean temperature of the layer constant with uniform heating and 
cooling as any asymmetric temperature profile specifically favours hexagonal 
patterns (Krishnamurti 1968). Although the temperature perturbations produced by 
the heat lamps are small, - 0.05 "C, the fluid starts to convect with the same pattern 
as the motions forced by the induced horizontal temperature gradients. Thus the 
initial pattern of rising regions is the same as the pattern of holes in the mask. Once 
convection appeared the heat lamps and mask removed and the convective planform 
was observed to determine its stability. 

3. The onset of convection 
3.1. Numerical results 

The infinite-Prandtl-number and Boussinesq approximations were made in a 
numerical scheme, using linear theory, to calculate the critical Rayleigh number for 
an exponential and super-exponential viscosity variation. The latter was modelled 
on the viscosity-temperature relationship for Lyle's Golden Syrup. The method 
involved a propagator matrix technique and full details are given by White 
(1981). 

A plot of R, versus the viscosity variation for an exponential fluid, figure 3, 
initially shows a rise in R,, as the viscosity variation is increased, until it  reaches a 
peak value at vrnax/vrnln x 1000 after which it drops rapidly. The super-exponential 
viscosity function for Golden Syrup assumed a mean temperature of 20°C and 
produces a larger increase in R, at a given viscosity variation and reaches a peak 
value a t  vmax/vrnln x 3000. Including the temperature dependence of the thermal 
conductivity of syrup, in addition to  the viscosity, results in a larger increase in 
R,. For both exponential and syrup-type viscosities the critical wavenumber drops 
very slightly as the viscosity variation is increased and then rises sharply for 
B( = In (umax/~,,,)). greater than 4 (figure 4). 

Stengel et al. (1982) examined the onset of convection in cosine-, exponential- and 
super-exponential-viscosity fluids. Their results agree exactly with those calculated 
by White (1981) apart from their super-exponential function, tailored to fit the 
viscosity variation of glycerine, where the results agree qualitatively with those for 
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FIGURE 3. A plot of K ,  versus B( =In (vmax/vmin)) for: 0 ,  an exponential-viscosity fluid: ., 
Golden Syrup; A, Golden Syrup, including the effects of a variable thermal conductivity. 
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FIGURE 4. A plot of k,  versus B( =In (vmax/vmin)) for: 0 ,  an esponential-viscosity fluid; ., 
Golden Syrup; A, Golden Syrup, including the effects of a variable thermal conductivity. 

syrup. The peak value of R, for glycerine was higher, and occurred at  a larger B than 
that for the exponential fluid. In addition they found that the inclusion of a 
temperature-dependent coefficient of expansion, a!, and specific heat, C,, in the 
glycerine function produced a reduction in R, to below the value with constant a! and 
C,. The critical-Rayleigh-number curve for the syrup is similar to that found by 
Richter et al. (1983) who used a different approach to find R,, involving a Green 
function and assuming a fixed bottom temperature of 80 "C. 

The predicted increase of 11, for convection in syrup with a moderate viscosity 
variation is sufficiently large that it could be detected in the laboratory. Experiments 
were then carried out using visual observations to determine onset. 

11 2 
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3.2. Experimental results 
The onset of convection is best determined by measuring the heat flux though the 
layer to detect a change in the Nusselt number as convection starts. With the 
apparatus described above this measurement was not possible, so the criterion used 
was the appearance of a convection pattern. Initially both water baths were set a t  
the mean temperature of the planned final state for 24 h to remove any temperature 
perturbations due to the previous pattern. The water-bath temperatures were then 
set to their final values and convection was allowed to develop from any random 
temperature perturbations present in the layer. The time taken for a convection 
pattern to appear and fill the tank was measured from when the water baths reached 
their final temperatures. Experiments were carried out at Rayleigh numbers in the 
range 1600-2500 and a t  a fixed viscosity variation of 50. At the lowest Rayleigh 
numbers investigated the first instability observed was not hexagonal. Figure 5 
shows the development of convection with an initial Rayleigh number of 1690, which 
is below R, calculated for a viscosity variation of50 with the same mean temperature 
as the experiment. A convection roll is seen to have formed, a t  the bottom edge of 
t>he screen, which subsequently broke up into hexagons and a new roll formed farther 
out from the edge. The new roll also broke down into hexagons and again another roll 
formed farther out. The process was repeated until the whole layer was covered with 
hexagons. The evolution of the pattern was very slow so the Rayleigh number was 
increased for the last three pictures to reduce the observation time. The final pattern 
of uniform hexagons had a wavenumber. k = 47cd/t'3h. of 2.78. whc.rc h is thc 
separation of adjacent rising regions and d is the depth of the layer, smaller than the 
calculated critical wavenumber of 3.12. The initial roll from which the hexagons 
evolved had a wavenumber of 3.0 and lines through the centres of adjacent rows of 
hexagons retained this original spacing. 

At a Rayleigh number of 2200 the pattern evolved in a different manner. As before 
the first observed instability was a roll which transformed into hexagons and the 
convection pat'tern propagated inwards from the bot't'om edge. Then, before half the 
screen was filled in the previous manner, convection appeared simultaneously over 
the rest of the layer. At still higher Rayleigh numbers the rolls and hexagons had 
only propagated a small distance in from the edge before a random polygonal pattern 
appeared all over the remainder of the tank (figure 6). 

A plot of the inverse of the time taken to fill the layer with a convection pattern 
versus the Rayleigh number reveals t,wo distinct trends (figure 7). The appearance of 
convection in runs with Rayleigh numbers less than 2100 (line 1) was due solely to 
the behaviour observed in figure 5, whereas the time taken for runs on line 2 was 
c,ontrolled by the behaviour illustrated in figure 6. The intersection of the two lines 
corresponds to a change in the nature of the growth of the convection pattern. The 
data points in experiments with very slow growth rates were obtained by observing 
the propagation of the rolls over several days and then extrapolat>ing for t>he time 
that would be required to fill the layer. 

The measurement of a critical Rayleigh number from figure 7 presents a problem. 
Convective motions, observed at  a Rayleigh number as low as 1670, were initially in 
the form of a roll whereas the expected behaviour, the simultaneous appearance of 
polygons all over the screen, was observed for runs on line 2 .  At R, in a constant- 
viscosity fluid the growth rate of the convective motion, c, is proportional to 
(R-R,) which is reflected in the linearity of the points on line 2. Taking the intercept 
of line 2 on t'he y-axis where l/t = 0, i.e. zero growth rate, should give R,. The value 
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FIGURE 5 .  The appearance of convection from random initial conditions at a viscosity variation of 
50. The marker was 10 cm long, twice t,he layer depth. (a) R = 1690, after 78 h another roll had 
formed farther out; (b) H = 1780 after 126 h ;  (c) R = 1780 after 149; ( d )  R = 1780 after 169 h. 

obtained by this method is 1940, which is M 14% less than the calculated critical 
value of 2200 for a syrup-type viscosity with a variable thermal conductivity, but is 
greater than R, for a constant-viscosity fluid. The calculated values of R, are 
probably too large as the effect of the finite conductivity of the boundaries and the 
temperature dependence of C, and a were not included. Richter et a1 (1983) studied 
the Nusselt number-Rayleigh number relationship for convection near critical in an 
experiment with a viscosity variation of 3000 and found that the measured value of 
R, was 35% lower than that predicted by linear theory. 

An explanation for the observations above can be given if we consider the 
occurrence of the subcritical instabilities predicted by Busse (1967 b). No convection 
occurs when the Rayleigh number is increased until R, is reached, when the amplitude 
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FIGURE 6. The appearance of convection from random initial conditions a t  a Rayleigh number of 
2220 and viscosity variation of 50. After: ( a )  328 min; ( b )  452 min; (d )  576 min. The marker was 
twice the fluid depth. 

grows to a finite value (figure 8).  As the Rayleigh number is reduced convection will 
persist at finite amplitude until R, is reached, with a corresponding minimum 
amplitude E D ,  when it ceases. 

If we now consider the existence of a boundary roll with an amplitude greater than 
ED, then provided the Rayleigh number is above R,, the boundary roll can resonate 
with the finite-amplitude convective state. At this Rayleigh number hexagons are 
the only stable finite-amplitude convection in a fluid with variable viscosity, so the 
roll breaks down into hexagons. The enhanced heat flux through the region in which 
convection is occurring will change the temperature a t  the boundaries owing to the 
finite conductivity of the glass. This change in temperature gives rise to further 
horizontal temperature gradient which aid the production of another boundary roll 
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FIGURE 7. The inverse of the time taken for a convection pattern to fill the layer, in experiments 
with a viscosity variation of 50, versus the Rayleigh number. The appearance of convection in runs 
on line 1 was characterized by the propagation of rolls and hexagons, that on line 2 by the 
simultaneous appearance of polygons. 
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FIGURE 8. Qualitative sketch for the dependence of the amplitude of convection on the Rayleigh 
number for rolls and hexagons. Solid lines represent stable convection and dashed lines are for 
unstable convection. As the Rayleigh number is increased from zero, convection will start a t  R, in 
the form of hexagons. These remain stable until R,, when they transform into rolls. When 
decreasing the Rayleigh number from above, R, rolls are stable until RA, when they break down 
into hexagons. These hexagons persist below R, until R, is reached and convection ceases. (From 
Busse 1967a.) 

farther out into the fluid. If the Rayleigh number is below R, then no subcritical 
instability is possible and the boundary roll remains confined to the very edge. The 
intercept of line 1 with l / t  = 0 will give the value of R,. From figure 7 ,  R, = 1640 a t  
a viscosity variation of 50. Richter et al. (1983) found R, to be 1350 in an experiment 
using syrup a t  a viscosity variation of 3000. 
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For Rayleigh numbers greater than R, the boundary rolls will still grow and 
resonate with the 'normal' convection. The time taken to fill the screen with a 
convective pattern is governed by the growth rate of the convective instability. 
From figure 7 we see that the growth rate of both types of convective instability is 
linear, but that of the normal convection increases more rapidly with increasing 
Rayleigh number than that of the boundary rolls. 

3.3. The onset of convection with controlled initial conditions 
The horizontal temperature gradients a t  the sidewalls represent uncontrolled 
perturbations which appear to initiate subcritical, finite-amplitude convection. In  
order to test this idea and understand the phenomenon more fully a set of 
experiments was carried out with controlled initial conditions at a viscosity variation 

The layer was left at 20 "C for 15 h and then a mask containing a single slit, 4 cm 
wide, across its centre was placed over the layer. The heat lamps were switched on 
in order to generate horizontal temperature gradients in the fluid under the 
illuminated slit. After one hour the water-bath temperatures were set to their final 
values. When convection appeared, as a single rising region under the slit in the 
mask, the heat lamps and mask were removed and the evolution of the pattern 
observed. Experiments were carried out at different Rayleigh numbers above and 
below the value of R, obtained previously. 

In  experiments above R, a single roll initially formed under the slit in the mask. 
Later further rolls formed either side of this roll and the convective pattern gradually 
propagated from the centre outwards (figure 9). As in the experiments from random 
initial conditions, the rolls broke down into hexagons until the whole layer was 
covered with a uniform hexagonal pattern. The wavenumbers of the original rolls and 
the final hexagons were also the same as in the random case. In  the experiments 
carried out below R, the initial roll formed as before but died away when the forcing 
from the heat lamps was removed. 

These experiments indicate that a disturbance initiated by horizontal temperature 
gradients can resonate with finite-amplitude, subcritical convection and so continue 
to grow once the forcing is removed. Below R, convection remains localized to the 
origin of the driving temperature gradients and dies away once these are removed. 
In the experiments with random initial conditions, convection remained as boundary 
rolls confined to the edges of the tank when the Rayleigh number was below R,. At 
higher Rayleigh numbers these rolls resonated with the subcritical, finite-amplitude 
state, which existed because of the variable viscosity, and propagated into the 
interior of the layer. 

The occurrence of these subcritical instabilities driven by temperature per- 
turbations at the side walls are probably the reason for the confusion of Somerscales 
& Dougherty (1970) in defining a critical Rayleigh number. They found that, for a 
fluid with a weakly temperature-dependent viscosity, rolls appeared at the sidewalls 
and propagated towards the centre as the Rayleigh number was increased. At 
R = 1670 their rolls broke down into hexagons which persisted until the Rayleigh 
number was raised above a certain value when they broke down into rolls. 

Stengel et al. (1982) carried out experiments to measure the critical Rayleigh 
number in a laboratory experiment using glycerine with a viscosity variation of up 
to 3000. They determined the onset of convection by both visual observations and 
changes in the heat flux and noted that ' a t  small to moderate c in glycerol, an initial 
pattern of rolls always broke up into hexagons after the apparatus had been allowed 

Qf 50. 
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FIGURE 9. The growth of a convective roll induced by horizontal temperature gradients from a set 
of heat lamps and a mask. The Rayleigh number of the fluid was 1880, which is above R,, and the 
viscosity variation was 50. The marker was twice the fluid depth. (a) After 2 h new rolls had formed 
either side. ( b )  After 7 h the rolls were seen to be breaking down into hexagons. (c) After 18 h the 
final hexagonal pattern. 

to sit with constant AT for several hours’. Their parameter c was ln(vmax/vmin). This 
behaviour could well be an example of the type of instability discussed above. 

The set of experiments presented above illustrates some of the problems involved 
in measuring a critical Rayleigh number for a variable-viscosity fluid. Using a change 
in the Nusselt number to determine the onset of convection has the advantage that 
i t  is a more sensitive method than visual observation. However, the method cannot 
discriminate between a change in the Nusselt number due to the onset of ‘normal’ 
convection and subcritical convection excited by horizontal temperature gradients 



260 D. H. White 

at the boundaries. For an accurate determination of R, great care must be taken to 
avoid any such horizontal temperature gradients at the edges. 

The results presented here indicate that there is an increase in the critical Rayleigh 
number as the viscosity variation is increased up to 50. The measured values are 
about 14 YO less than the calculated ones, which is probably due to the neglect of the 
finite conductivity of the boundaries and the unknown temperature dependence of 
01 and C, in the calculations. The determination of the critical Rayleigh number is 
complicated by the occurrence of subcritical instabilities excited by horizontal 
temperature gradients a t  the boundaries. 

4. Planforms of variable viscosity flows 
At low Rayleigh numbers in a uniform-viscosity fluid the only stable convective 

planform is rolls within a limited bandwidth of wavenumbers (Busse 1967a; Busse 
& Whitehead 1971). The effect of a small viscosity variation is to reduce the Rayleigh 
number, R,, of the bimodal transition, and the existence of a new stable planform, 
hexagons, at low Rayleigh numbers and large viscosity variations (Richter 1978). 

The definition of stability must have a subjective element as a pattern can break 
down by a uniform process or though the action of dislocations triggered a t  the edges 
by the imperfect packing in the finite layer. These dislocations work their way in 
from the sides and rearrange a pattern that would otherwise remain unchanged. The 
definition of stability chosen was that the pattern should remain unchanged for a t  
least 24 h ( d 2 / ~  x 7 h). At small viscosity variations rolls and the bimodal pattern 
were observed with hexagons stable near R,. However, in experiments with viscosity 
variations greater than 6 a new planform of squares was found to be stable. The 
stable planforms are illustrated below. 

4.1. Rolls 
Rolls consist of rising and sinking fluid in a two-dimensional pattern (figure 10a). 
They are the stable planform for a range of Rayleigh numbers and wavenumbers in 
flows with a small viscosity variation. Richter (1978) found that these variable- 
viscosity rolls were subject to the same instabilities as those in a constant-viscosity 
fluid although there was a reduction in R, with increasing viscosity variation. 

4.2. The bidomal pattern 

This pattern consists of a set of primary rolls with a weaker, perpendicular set of 
larger-wavenumber secondary rolls (figure 10 b) and represents the transition to a 
three-dimensional planform. In the illustrated pattern the viscosity in the cold 
boundary layer is an order of magnitude greater than that in the hot boundary layer, 
and yet an enlargement of the picture (figure 1Oc) shows the goblet-shaped streak 
patterns to be identical to those observed by Busse & Whitehead (1971). 

4.3. Squares 

A typical example of the new square planform (figure IOd) clearly illustrates a 
discrete rising plume a t  the cell centre surrounded by four sinking sheets. This 
structure is in contrast to the proposed square pattern for a constant-viscosity fluid 
(Rayleigh 1916 ; Chandrasekhar 1961) which consists of squares of alternately rising 
and sinking fluid in a chequerboard fashion. The square pattern was also found to 
exist as a subcritical, finite-amplitude state when it still displayed the same features 
of isolated rising plumes. 
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In  constant-viscosity convection the only pattern to resemble squares is a bimodal 
pattern with equal primary and secondary wavenumbers. However, Whitehead & 
Parsons (1978) showed that a square bimodal pattern was not stable below a 
Rayleigh number of 130000 and the variable-viscosity squares do not show the 
asymmetry in convective amplitude seen in the bimodal flow, Additionally, in 
uniform-viscosity flows the bimodal pattern is thought to be a boundary-layer 
instability which develops when R > 22600 whereas squares were observed at ,  and 
below, R, when the boundary layers have not formed. The reduction in R, observed 
by Richter (1978) is insufficient to account for the existence of stable squares around 
R,. Streak patterns in the syrup give some indication of the fluid flow but their 
interpretation is difficult as they can be extremely complex (figure 10e). 

The new square planform does seem to be distinct from a bimodal pattern of equal 
wavelengths. In  the square pattern observed above, the localization of the rising 
plumes was clearly observed when the Rayleigh number was suddenly raised from a 
low value. The rising regions became more visible as the temperature contrast 
increased but initially they retained their original circular shape. As the Rayleigh 
number was further increased the central rising jets elongated until a continuous roll 
could be seen a t  a Rayleigh number of z 25000 and the pattern began to resemble 
a bimodal flow (White 1981). Busse & Riahi (1979) and Proctor (1981) have 
calculated that squares should appear in a constant-viscosity fluid with fixed flux 
boundary conditions. However, these squares consist of a pattern of alternative 
squares of rising and sinking fluids, unlike the squares above where there is a central 
rising region surrounded by sinking fluid. Busse & Frick (1985) predict the existence 
of a square pattern for viscosity variations greater than 2 in their analysis of a linear 
viscosity variation. 

4.4. Hexagons 

The hexagons seen here (figurc l0 f )  arc identical to those seen by Richter (1978). 
Each cell consists of a central rising plume surrounded by six sinking sheets. 
Distortions of the pattern occur a t  the edges where imperfect packing occurs. The 
streak patterns observed (figure l o g )  suggest that the fluid flow is similar to that 
proposed by Chandrasekhar (1961). As predicted by Busse (1967 b )  hexagons were 
also observed as a subcritical, finite-amplitude state. 

4.5. Triangles 

In  experiments with hexagons a t  high Rayleigh numbers a tendency to form a 
triangular planform was observed. To investigate this further, a regular triangular 
pattern was induced (figure 10h). The pattern consisted of rising regions centred in 
an hexagonal array surrounded by three sinking sheets forming an equilateral 
triangle. The pattern was very unstable a t  low Rayleigh numbers but remained for 
more than 10 h a t  a Rayleigh number of 26000 and a viscosity variation of 50. The 
cell structure observed is very similar to that proposed for triangles by 
Chandrasekhar (1961). 

4.6. Spokes 

In  constant-viscosity convection the spoke pattern, or multi-modal flow, is the result 
of the breakdown of the bimodal pattern a t  a Rayleigh number of z lo5. It consists 
of rising and sinking fluid arranged in a ‘ time-dependent ’ spoke-like pattern. ‘Time 
dependent ’ is used here to describe the planform a t  a given point. The gross structure 
of the pattern remains the same but the features move around. Time-lapse movies 
have shown periods of relative stability followed by rapid change and then further 
stability. The same features were seen in the variable-viscosity experiments a t  
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FIGURE 10. The stable planforms. ( a )  Rolls with R = 9700, k = 3.14 and a viscosity variation of 4.5 
seen after 8 h. ( b )  The bimodal pattern, formed from rolls with k = 3.14, a t  R = 11000 and with a 
viscosity variation of 10 seen after 23 h. (c) An enlargement of ( b )  to show the ‘goblet’-shaped 
streak pattern. (d )  A square planform, with R = 15600, k = 2.86 and a viscosity variation of 50 
seen after 24 h. ( e )  Streak patterns in squares with R = 5800, k = 3.14 and a viscosity variation of 
50. 0 Hexagons with R = 9300, k = 3.62 and a viscosity variation of 50 seen after 4 h.  (9 )  Streak 
patterns in hexagons with R = 13400, k = 3.62 a t  a viscosity variation of 10. (h)  Triangles with 
R = 25800, k = 3.0 and a viscosity variation of 50 seen here after 10 h. (i) A spoke pattern at 
R = 63300 with a viscosity variation of 51 after 17 h. (i) A spoke pattern with R = 30600 and a 
viscosity variation of 1020 after 28 h, All the experiments were in a 5 cm layer, except for (i) and 
(i) which were in a 6 cm layer; the marker, where shown, was 10 cm. 

Rayleigh numbers as low as 30000 and resulted from the breakdown of the 
previously described patterns (figure 10i ,  j). The most remarkable feature of these 
pictures is their similarity to the constant-viscosity flows, despite a viscosity 
variation of up to three orders of magnitude. The only easily discernible difference 
from the constant-viscosity flow is a small reduction in the horizontal scale with 
increasing viscosity variation. Thus a t  low Rayleigh numbers a variable viscosity 
produces new planforms but, even for large variations in viscosity, once the Rayleigh 
number exceeds 30000 the familiar spoke pattern develops. 
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FIGURE 11.  The experimentally determined stability region of the square convection pattern at a 
viscosity variation of 50 f 3 : ., stable squares ; 0, breakdown by cell fusion ; x , breakdown by 
various local processes. The doedashed line is the limit, set by the mosaic instability, of the 
smallest-wavenumber squares tha t  can be induced, and the lower curve represents the neutral 
curve for a syrup-type viscosity with a variation of 50. 

5.  The stability of squares 
In the following experiments a regular convection pattern was induced using the 

techniques described in $ 2 .  The forcing was removed and the planform was allowed 
to evolve with time in order to study its stability. The experiments were conducted 
a t  a fixed viscosity variation of either 50 or 1000, whilst the Rayleigh number and 
wavenumber were varied between runs. The latter set of experiments used a 6 ern 
deep layer. 

The stability of squares as a function of R and k ,  where k = 2nd/h and h is the 
separation of adjacent rising regions, is shown in figures 11 and 12. The limits of the 
stable region are set by the occurrence of several different instabilities, described 
below. The neutral curve included in these figures is from linear stability calculations 
for a fluid with a syrup-type viscosity variation (White 1981). Inside the stable 
region squares were observed to remain unchanged for up to a week. 

The most striking difference between these observations and those for constant- 
viscosity rolls is the occurrence of subcritical convection, predicted by Busse (1967 b) ,  
but in the form of hexagons, not squares. The subcritical squares observed were 
induced above R, and then the Rayleigh number was reduced. Even at, the lowest 
Rayleigh numbers for which these squares were observed, they remained perfect and 
did not adjust to hexagons. The other most noticeable feature of figures 11 and 12 
is the shift in the range of stable wavenumbers to larger values and that they are no 
longer centred about k,  as in the case of constant-viscosity rolls. The stable 
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bandwidth at a viscosity variation of 1000 shows a more marked shift to larger 
wavenumbers than those with a viscosity variation of 50. At a viscosity variation of 
1000 squares with k as large as 5.4 were found to be stable and those with even higher 
wavenumbers may also be stable but it was not possible to induce them since the 
thermal inertia of the system was such that the water-bath temperatures could not 
be brought to their final values before convection started a t  a lower viscosity 
variation than planned. Consequently the squares broke down before they reached 
the final state a t  which they may have been stable. 

The transitions responsible for the boundaries of the stable region were essentially 
the same in both cases, which is surprising considering the twenty-fold increase in the 
viscosity variation between the two sets of experiments. The result of all transitions 
caused by moving out of the top of the stable region was to produce a time-dependent 
spoke pattern with a gradual change in the exact nature of the breakdown between 
small and large k. One interesting feature observed was the role of symmetry in the 
break down of small-wavenumber, large-viscosity-variation squares just above the 
stable region. It is also interesting to note that the transition from a regular square 
pattern to a more disordered and time-dependent flow occurs at  R x 25000, which 
is very similar to the Rayleigh number a t  which the bimodal instability occurs in 
constant-viscosity rolls. Richter et al. (1983) report a change in the Rayleigh 
number-Nusselt number relationship in variable-viscosity convection a t  a Rayleigh 
number of 20000-30000, indicating that the change in planform is associated with 
a change in the thermal structure. The spoke pattern would appear to be less efficient 
a t  transporting heat than a square pattern a t  the same Rayleigh number. At low 



266 D. B. White 

FIGCRE 13 a-f. For caption see facing page 
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FIGURE 13(a, b ) .  The mosaic instability observed in squares with k = 2.62 induced a t  a Rayleigh 
number of 14800 and a viscosity variation of 50. (a )  The initial appearance of the pattern with 
rising regions developing a t  the corners of the induced squares. ( b )  After 4.2 h the small squares 
have grown a t  the expense of the octagons to produce a final square pattern with a wavenumber 
increased by 42. (c-g) Cell fusion seen in squares with R = 4150 and k = 4.49 at a viscosity 
variation of 50. (c) The initial square pattern showing slight distortions after 1.2 h. (d )  A regular 
breakdown is seen along the bottom after 3 h. ( e )  A random breakdown over the rest of the layer 
produced an irregular pat,t.ern aft.er 7.8 h. ( f )  A final pattern of irregular polygons after 22.7 h with 
a wavenumber decreased by about 4 2 .  (9 )  Schematic diagram to illustrate how regular cell fusion 
could produce a final pattern of squares with a wavenumber reduced by a factor of 2/2 orientation 
a t  45" to the original pattern. The marker is twice the fluid depth. 

Rayleigh numbers the transitions act upon a square pattern outside the stable area 
to produce a new set of squares or polygons with a wavenumber inside the stable 
region. This behaviour is very similar to the action of the zigzag and cross-roll 
instabilities in low-Rayleigh-number-constant-viscosity convection. 

5.1. The mosaic instability 
The mosaic instability sets the small-wavenumber limit of stable squares and 
occurred as convection first appeared. When small-wavenumber squares were 
initiated at  a high Rayleigh number (AT was changed from being subcritical to a final 
value corresponding to a high Rayleigh number) and hence a high growth rate, 
convection was observed to  start as rising jets a t  points on a square array defined by 
the mask (figure 13a, b) .  As the diagonal separation between these rising regions was 
large compared with the layer depth, other rising regions formed on these diagonals 
to produce a pattern of octagons, centred on the induced rising jets, with small 
squares at their corners. These squares grew to produce a pattern a t  45' to, and with 
a wavenumber 4 2  times, that of the original and thus moved it well into the stable 
region. 

If a small-wavenumber square pattern was induced at a low Rayleigh number, and 
hence a small growth rate, the rising jets on the diagonals did not grow and desired 
square pattern was produced after several hours. Once the squares were established 
the Rayleigh number could be raised without the occurrence of the mosaic 
instability. Thus the mosaic instability can only occur a t  the start of convection 
when the sense of fluid motion a t  the corners of the induced squares is unspecified . 
With decreasing wavenumber the Rayleigh number below which squares must be 
induced to avoid the mosaic instability also deereases until, a t  k NN 2.62, squares can 
only be forced at  just above R,, which sets the limit to the smallest wavenumber 
squares whose stability can be investigated. Any squares with k < 2.62 was subject 
to the mosaic instability a t  whatever Rayleigh number it was induced. 
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5.2. C d  fusion 
Cell fusion produced a reduction in the wavenumber of the convection pattern. A 
sinking sheet, which made up the cell wall between two adjacent squares, began to 
decay and allowed the rising jets a t  the centres of the two cells to move together and 
merge, thus forming a large cell (figure 13c-8. The formation of a perfect square 
pattern, with a wavenumber smaller by a factor of 2 / 2 ,  is possible by this mechanism 
(figure 13g) but would require large-scale regularity and uniform orientation of the 
breakdown of the cells. However, there was no preferred direction in the layer and 
whilst a regular breakdown could be seen along the bottom of the screen, it also 
occurred a t  90" to this orientation in other parts of the layer, which resulted in a 
pattern of irregular polygons rather than squares. The size adjustment was as 
predicted for the regular breakdown and the average separation of rising regions 
gave k z 3.1 compared with a predicted value of k = 3.17. 

5.3.  The transition to spokes 

The transition to spokes at high Rayleigh numbers, greater than 25000, revealed no 
regular transitions and the exact nature of the instabilities depended upon the 
wavenumber and Rayleigh number of the original squares. Full details of these 
instabilities can be found in White (1981). 

5.4. Symmetric cell splitting 
Symmetric cell splitting is well illustrated in a run a t  a viscosity variation of 1000 
with R = 23200 and k = 3.15 by a series of time-lapse photographs (figure 14). The 
remarkable feature of this experiment was the symmetry displayed in the breakdown 
of the pattern, as illustrated in figure 14(c) where two lines of symmetry are 
indicated. It is difficult to understand how this symmetry can occur as it requires 
coordination of the pattern over long distances. Typical fluid velocities under these 
conditions have been estimated as 20cm/hr and yet changes were seen to occur 
simultaneously and symmetrically over distances greater than 50 em. The long-range 
ordering of the breakdown must be effected by forces transmitted instantaneously by 
the pressure field. In  addition, the geometry of the rising and sinking regions perhaps 
set up horizontal temperature gradients that drove a large-scale flow which also 
helped organize the breakdown. The final pattern was a disorganized spoke flow with 
generally larger-wavenumber cells. 

6. The stability of hexagons 
The stability map for hexagons at  a viscosity variation of 50 (figure 15) shows the 

same shift towards large wavenumbers that is evident for squares but has a slightly 
smaller bandwidth of stable wavenumbers. Again the stable region was bounded by 
the occurrence of several transitions with the existence of finite-amplitude, subcritical 
convection below the calculated neutral curve. Inside the stable region hexagons 

FIGURE 14. Symmetric cell splitting in squares with k = 3.15 and R = 23200 and a viscosity 
variation of 1020. ( a )  Squares along the middle of the screen began t o  split after 10 h. (b )  Squares 
either side of the central row were also observed to  start splitting after 13 h. ( c )  The breakdown 
continued with remarkable symmetry. I n  this picture, after 15.5 h, two lines of symmetry are 
drawn. (d )  After 18 h the symmetry of the pattern began to  break down. ( e )  This breakdown 
continued and Rftw 60.5 h t.he pat,tern was more irregular. ( f )  Finally a spoke-likr f l o ~  tirvr1opr.d 
after 28 h. The layer was 6 cm deep, with a 10 cm marker. 
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FIGURE 15. The experimentally determined stability region for hexagons at a viscosity variation 
of 50 3 : , stable hexagons ; 0,  the mosaic instability ; 0, breakdown by cell fusion ; + , cell 
splitting. The dot-dashed line is the limit, set by the mosaic instability, of the smallest 
wavenumbers that could be induced. 

remained unchanged for many timescales though there was a slight adjustment from 
the edges where the hexagonal pattern could not pack perfectly into a finite 
rectangular layer. Above a Rayleigh number of x 20000 hexagons broke down into 
a more disordered time-dependent flow. There are problems in determining the 
stability of hexagons as it is also function of the perfection of the initial pattern due 
the action of dislocations initiated a t  the sidewalls. The breakdown of cells in the 
centre of the layer was the best indication of stability as they were farthest removed 
from the edge effects. 

The three main transitions, similar to those for squares, were: 

6.1. The mosaic instability 
The mosaic instability again sets the limit to the smallest-wavenumber hexagons 
that can be induced. When the initial wavenumber was just outside the stable area 
extra rising regions formed a t  each vertex of the original hexagons, in a similar 
manner to the mosaic instability in squares. This instability leads to a hexagonal 
pattern with a wavenumber 4 3  times the original and is illustrated in figure 16. In  
this case the wavenumber of the resulting hexagons was outside the stable region so 
the hexagons broke down. Had symmetry been followed, triangles would have 
formed. 

6.2. Cell fusion 
Cell fusion produces a pattern of smaller-wavenumber polygons (figure 17a, b). In 
squares two cells condense to form a larger one with a wavenumber increased by a 
factor of 4 2 .  For hexagons to  retain the same symmetry three cells must merge in 
the production of a hexagon with a wavenumber increased by 4 3  (figure 17c). 
Groups of three cell walls in a regular hexagonal array must break down 
simultaneously for the transformation to produce a regular pattern. The breakdown 
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FIGURE 16(a, b ) .  The development of the mosaic instability in an initial hexagon pattern with 
k = 2.59 induced at a Rayleigh number of 16000. ( a )  The initial appearance of convection. ( b )  After 
1.5 h a nearly regular hexagonal pattern evolved. (c, d )  The further development of the mosaic 
instability in hexagons with an initial wavenumber of 2.59 a t  a higher Rayleigh number of 30 500. 
The original rising regions induced through the mask are those at the centres of the small hexagons. 
(c) After 2 h the initial hexagons had become smaller. (d )  A random pattern was seen to be 
developed 30 min later as cell fusion continued. 

of cells in the layer is not this organized and no indication of the illustrated 
transformation was observed. 

6.3. Cell splitting 
Cell splitting was very similar to that seen in squares (figure 18). This breakdown 
initially produced a disordered pattern of larger-wavenumber polygons, including 
many squares, with the eventual development of some spoke-like features consisting 
of a ring of nearly triangular cells. 
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FIGURE 17. Cell fusion in hexagons with k = 4.54, R = 4600 and a viscosity variation of 50. ( a )  The 
initial pattern after 30 min. ( b )  A set of irregular polygons after 17 h. (c) An illustration of the 
breakdown by cell fusion required to produce hexagons with a wavenumber reduced hy t’3. 

7. Vertical temperature profiles 
The reduction in the horizontal scale of the fluid motions as the viscosity variation 

is increased should be associated with a change in the thermal structure of the cell. 
I n  order to study these changes vertical temperature profiles were obtained for 
square cells a t  different viscosity variations using a small probe consisting of a 
thermistor, calibrated to 0.01 “C, mounted a t  the end of a 35 cm length of 1.5 mm 
diameter tube which could be swung into position in the layer and locked. A very 
low-speed motor then wound in a thread which raised the probe through the layer. 
Profiles were taken a t  a Rayleigh number of around 20000, for a viscosity variation 
of z 25,  z 150, and z 1000. Figure 19 shows the vertical temperature profile 
obtained a t  a point between the sinking and rising regions of a square a t  a Rayleigh 
number of 33700 and a viscosity variation of 1070. The existencc of a cwltl. stsgnant. 
upper boundary layer is immediately obvious. The intercepts on the temperature 
axis a t  d = 0 and d = 6 cm agree with the calculated boundary temperatures, 
showing that Wray’s (1978) Nusselt-number relationship is accurate in flows with a 
viscosity variation as large as 1000. Below the cold boundary layer the profile is 
stably stratified and nearly isothermal with the hot boundary layer a t  the base of the 
layer. 
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FIGURE 18. Cell splitting observed in hexagons with k = 3.03, R = 24200 and a viscosity variation 
of 50. ( a )  After 2 h the rising regions a t  the centres of some hexagons had split in two. ( b )  After 
4 h further splitting had taken place. ( c )  The final pattern of irregular polygons and some spoke- 
like features was time-dependent and is seen here after 22 h. 

The temperature profiles were then non-dimensionalized using the layer depth and 
the calculated temperature difference. The vertical temperature profiles through 
cold, intermediate and hot regions are shown in figure 20 for squares with R = 24000 
and umax/umin = 130. To allow better comparison between experiments a t  different 
viscosity variations an average of the curves through the three regions was taken and 
plotted for each of the three viscosity variations considered (figure 21). These are not 
true horizontally averaged vertical temperature profiles as they were not weighted 
by the amount of fluid a t  each of the different temperatures. 
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FIGURE 19. An experimentally determined temperature profile through a region between rising and 
sinking plumes in a square with R = 23700 a t  a viscosity variation of 1070. The open circles are 
the experimental results, the two closed circles are the calculated boundary temperatures. The 
development of a thick, stagnant cold boundary layer is immediately obvious. 
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FIGURE 20. Non-dimensionalized vertical temperature profiles through hot, intermediate and cold 
regions of a square cell with R = 24000 and a viscosity variation of 130. 

As expected the cold boundary layer is seen to thicken as the viscosity variation 
increases. In  addition the temperature of the nearly isothermal central region, 8i, also 
increases with increasing viscosity variation. In flows with larger viscosity variation 
the convective motions become confined to the hotter, less viscous part of the cell. 
This confinement produces the observed reduction in the horizontal wavelength of 
the convective planform. The results reported by Richter et al. (1983), who used the 
resistance of a fine platinum wire to measure the horizontally averaged temperature 
of convective flows in Golden Syrup a t  many different Rayleigh numbers and 
viscosity variations, are in good agreement with the results presented above. 
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Convection with a large viscosity variation produces a thick, stagnant, cold 
boundary layer which acts as an insulating lid to produce and increase in Bi. A large 
proportion of the temperature drop across the entire layer, and thus a large 
proportion of the viscosity variation, occurs across this stagnant lid. The flow is 
restricted to the hotter, less viscous part of the cell which the horizontally averaged 
vertical temperature profiles show to be nearly isothermal and thus isoviscous. The 
confinement of the flow to the lower part of the cell is reflected in the reduction of 
the horizontal scale of the convective motions observed in large-viscosity-variation 
experiments. The similarity between a constant-viscosity spoke flow and those 
observed in the variable-viscosity experiments is not surprising as the temperature 
profiles showed a large proportion of the convecting fluid to be isoviscous. 

The definition of a Rayleigh number based on the fluid properties a t  the mean of 
the boundary temperatures produces a Nusselt number-Rayleigh number rela- 
tionship very similar to that for a constant-viscosity fluid (Booker 1976; Wray 
1978; Richter et al. 1983). However, this definition does not reproduce the Rayleigh 
number observed for the transition between an ordered flow and the time-dependent 
spoke flow in a constant-viscosity fluid. The temperature profiles above clearly show 
that the majority of the convecting fluid is a t  a considerably higher temperature than 
the mean of the boundary temperatures. However, a Rayleigh number based on the 
viscosity a t  81 does not reproduce the constant-viscosity value for the transition to 
the spoke pattern. 

8. Planform transitions with changing viscosity variation 
Low-Rayleigh-number flows with a viscosity variation of 50 exhibit a different cell 

structure from the rolls seen a t  constant viscosity, with squares and hexagons as two 
possible stable planforms. An increase in the viscosity variation to 1000 produced no 
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FIGURE 22, The stability map for rolls, with k = 3.15, as a function of the Rayleigh number and 
the viscosity variation : a, stable rolls ; 0, rolls that became bimodal ; 0 ,  rolls that broke down 
into hexagons; m, rolls that broke down to  squares; 0, rolls that became bimodal and 
subsequently transformed into squares. The solid and open stars represent rolls and bimodal 
patterns respectively from Richter’s (1978) corrected data. The lower curve is the neutral curve for 
a syrup-type viscosity variation and the dashed line represents the Rayleigh number, R,, of the 
transition of rolls to a bimodal pattern a t  high viscosity variations. The dot-dashed line represents 
t’he theoretical Rayleigh number a t  which rolls break down to hexagons (Palm et al. 1967). 

new stable planforms although there is a further reduction in the horizontal scale of 
the fluid motions. In  order to investigate the transitions between constant- and 
variable-viscosity planforms a regular convection pattern with a fixed wavenumber 
of 3.14 was induced using the techniques described in $ 2  and sets of experiments were 
carried out to determine the stability of rolls, squares, and hexagons as a function of 
the viscosity variation and Rayleigh number. Full details and examples of all the 
transitions can be found in White (1981) and only the most significant are included 
here. 

8.1. The stability of rolls 

The experiments to determine the stability of rolls confirmed Richter’s (1978) work 
and showed that R, decreased with increasing viscosity variation (figure 22). In  
addition the stable region was bounded by a transition to hexagons a t  a low Rayleigh 
numbers and to a new planform of squares at large viscosity variations. 

8.1.1. The bimodal instability 

This appeared identical to that observed in a constant-viscosity fluid. At Rayleigh 
numbers just above R, the cross-roll component gradually appeared over several 
hours and the characteristic ‘goblet ’ streak pattern was clearly visible. The 
transition was completely reversible as the cross-roll component died away when the 
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FIGURE 23. The bimodal instability in rolls with R = 9900 and a viscosity variation of 20.2. ( a )  
After 4 h the rolls became slightly distorted. ( b )  After 27 h a bimodal pattern had formed with a 
dislocation in the cross-rolls. (c) After 50 h the dislocation had propagated in favour of smaller- 
wavenumber cross-rolls and an almost square pattern formed behind it. (d )  Finally, a regular 
pattern of nearly square cells developed after 101 h. 

Rayleigh number was reduced below R,. The value of R, was observed to fall with 
increasing viscosity variation until Y ~ ~ ~ / Y ~ ~ ~  = 10 when R, z 8000. There was little 
further reduction in R, as the viscosity variation was increased beyond this value 
and when ~ J ~ ~ ~ / Y ~ ~ ~  = 20 the bimodal transition occurred a t  a Rayleigh number of 
about 7500. The experiments show a good agreement with Richter’s (1978) data, 
which has been corrected to take into account the temperature drop across the glass 
boundaries of his apparatus (White 1981). 
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FIOiTRF: 24. 'I'he breakdown of rolls to  squares at a viscosity variation of 20 and K = 3330 ( 1 1 )  The 
initial rolls after 2 h. (b) Squares were observed to form a t  the edges after 26 h. (c) The squares 
propagated into the interior of the layer and after 67.5 h nearly all the layer was covered. ( d )  The 
experiment was terminated after 74 h. 

The bimodal pattern formed from rolls a t  a viscosity variation greater than 10 and 
Rayleigh numbers less than 20000 was itself unstable. Dislocations in the cross-rolls 
propagated in favour of smaller wavenumbers until the pattern had adjusted itself 
such that the cross-roll component had a wavenumber nearly equal to that of the 
original rolls and an almost square pattern resulted. In  addition to the adjustment 
in the cross-rolls, the primary rolls were observed to  break-up into discrete rising jets 
a t  the centres of the square cells (figure 23). At Rayleigh numbers above 20000 this 
transition to  squares was not observed. 
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Richter (1978) argued that the reduction in R, was due to the reduced viscosity 
of the hot boundary layer, as by redefining the Rayleigh number using an estimated 
mean viscosity for the hot boundary layer he found that the values of R, were close 
to the constant-viscosity value of 22600. However, the results above show a greater 
reduction in R, with increasing viscosity variation and consequently Richter's 
modified Rayleigh number no longer produces a value of R, close to that for a 
constant-viscosity fluid. The averaged vertical temperature profiles for variable 
viscosity convection showed an increase in Oi above the constant-viscosity value of 
0.5. If the viscosity at 8, is used in defining the Rayleigh number a higher value is 
produced for R, but again the value is much lower than R, for a constant-viscosity 
fluid. 

8.1.2. The square instability 
This occurred in flows with R < R, and a viscosity variation greater than 10. A set 

of squares formed down the edges of the tank and propagated inwards (figure 24). 
Their rate of propagation was a function of both the Rayleigh number and viscosity 
variation. The larger the Rayleigh number and higher the viscosity variation the 
quicker the squares formed, indicating that the squares are not forced by the lateral 
boundaries but that the edge effects of the finite layer allow the initiation of an 
adjustment to an unstable pattern. A perfect pattern of rolls in a larger tank may 
have remained stable to slightly larger viscosity variations than were observed. 

8.2. The stability of squares 
The existence of the new, stable, square pattern is a consequence of the temperature- 
dependent viscosity of the fluid. At sufficiently high viscosity variations ( > 200) a 
regular square pattern formed from random initial conditions. In this study of the 
stability of squares as a function of the Rayleigh number and viscosity variation, the 
stable region (figure 25) was bounded from below by the presence of subcritical, 
finitc-amplitude disturbances and above by the occurrence of instabilities which led 
to three other planforms. 

8.2.1. The transition to spokes 
This occurred by the mechanisms described by White (1981) and the Rayleigh 

number of the transition is seen to drop with increasing viscosity variation (figure 
25). This drop is not due to a reduction in the stability of squares but is a result of 
the shift of the stable band of wavenumbers to larger values with increasing viscosity 
variation. In  this study only one wavenumber, k = 3.14, was used, which is not the 
most stable a t  high viscosity variations. 

8.2.2. The transition to a bimodal pattern 
This occurred when the rising jets a t  the centre of a line squares joined up to form 

a dominant roll (figure 26). The cell walls a t  90" to this main roll simultaneously died 
away to be replaced by cells with a larger wavenumber. 

8.2.3. The transition to rolls 

This was seen when the rising regions a t  the centres of a line of cells joined together 
to form a continuous roll and convective motion at 90" to these rolls died away 
completely. An experiment with R = 5850 and vmitx/vmin = 10 was right a t  the edge 
of the stability boundary (figure 27) and after 48 hours only half of the square 
pattern remained as the rest had transformed into rolls. 
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FIGURE 25. The stability map for squares with k = 3.15 : m, stable squares ; , squares broke down 
into rolls; 0, squares initially broke down into a bimodal pattern ; 0, squares broke down into a 
spoke flow. The lower line is the neutral curve for a syrup-type viscosity variation. The dashed line 
represents the stability of squares if those with a wavenumber at the centre of the stable region at 
a given viscosity variation (triangular symbols) are considered rather than jus t  those with k = 3.15. 

8.3. The stability of hexagons 
At viscosity variations greater than 20 hexagons were observed to be stable up to 
Rayleigh numbers around 17000 but the transition to other planforms occurred at  
decreasing Rayleigh numbers as the viscosity variation was reduced below 20 (figure 
28). This behaviour is similar to that observed for squares, although the reduction in 
the Rayleigh number of the transition occurred a t  a slower rate so that at a viscosity 
variation of 10 hexagons wcre stable to higher Rayleigh numbers than squares, a 
reversal of the situation observed a t  a viscosity variation of 20. The bottom curve 
represents the neutral curve and the upper curve was controlled by two main 
transitions. 

8.3.1. The transition to polygons 
This was seen at Rayleigh numbers just above 17000 and viscosity variations 

greater than 20, by the methods described in $6. At higher Rayleigh numbers, 
greater than 25000, the final pattern was the spoke flow. 

8.3.2. The transition to rolls 

This occurred a t  low Rayleigh numbers and small viscosity variations. As there 
were three possible directions for the orientation of the roll pattern a completely 
regular pattern did not form (figure 29). At higher Rayleigh numbers, above R,, rolls 
are unstable and the hexagonal pattern broke down into a bimodal flow. 

The dashed lines on figure 28 represent the predicted transition of hexagons to rolls 
from Palm, Ellingsen & Gjevik (1967). The agreement is quite good, unlike the 
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FIGURE 26. The breakdown of squares to a bimodal pattern, which subsequently broke up into a 
spoke flow, observed in an experiment a t  a Rayleigh number of 32300 and a viscosity variation of 
20.0. (a )  The rising regions of the cells along the bottom of the screen were observed to join after 
2.5 h. ( b )  After 4 h more lines of rising regions had formed and the sinking sheets perpendicular to 
them died away. (c) After 9.75 h new cross-rolls with a larger wavenumber were forming. ( d )  The 
process was almost completed after 17 h when a nearly uniform bimodal pattern had formed. ( e )  
The bimodal pattern was not perfect as there were dislocations in the cross-rolls and the pattern 
began to break up (27.5 h). (f) A spoke-like pattern evolved as the final planform after 44.5 h .  
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FIGURE 27. Squares with a viscosity variation of 10.1 a t  a Rayleigh number of 5850 broke down 
into rolls aver a long period of time. ( a )  The initial square pattern after 3.25 h. ( h )  The bottom two 
rows of squares were transforming into rolls after 23 h. ( c )  Half of the square pattern had broken 
down into rolls after 48 h. 

prediction for the transition of rolls to hexagons, which is surprising as the analysis 
in both cases assumed a viscosity that varied linearly with temperature. 

The stability of rolls, squares and hexagons as a function of R and vmaX/ 11 mln . can 
be summarized in one diagram (figure 30), from which various features of the 
transitions discussed previously can be understood. Beyond a viscosity variation of 
10 the value of R, drops only slightly and the bimodal pattern produced is unstable 
to squares. The combined stability mep reveals an intersection between boundaries 
delineating the stability of squares and rolls a t  a viscosity variation of 10. Any 
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FIGURE 29. An example of the breakdown of hexagons into rolls in an experiment with a viscosity 
variation of 5.0 and a Rayleigh number of 6100. (a )  The initial hexagons after 7 h. ( b )  After 36 h 
rolls were developing in three different orientations. 
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FIGURE 30. A summary of the stability maps for rolls, hexagons and squares with k = 3.16. There 
is a large amount of hysteresis where the realized planform depends on what pattern was originally 
induced. In one small area rolls, hexagons or squares are all possible planforms. The dashed line 
represents R,. 

bimodal pattern produced with a Rayleigh number less than 23000 and a viscosity 
variation greater than 10 was thus in the stable domain or squares and was observed 
to transform into such a pattern. 

In  a constant-viscosity fluid the transition of the bimodal pattern to a spoke flow 
has been observed a t  Rayleigh numbers, depending on the perfection of the initial 
pattern, between 70000 and 150000 (Whitehead & Chan 1976). In  thc variable 
viscosity experiments reported above, a bimodal pattern with R = 30000 and 
vmax/u,,, = 50 broke down into a spoke flow and so the Rayleigh number of the 
bimodal -spoke transition clearly falls from a value of x 100000 a t  constant 
viscosity to x 30000 a t  a viscosity variation of 50. However, this transition was not 
fully investigated since i t  was not possible to produce a high Rayleigh number, a t  a 
low viscosity variation, with the present apparatus and fluid. 

The stability map produced by Oliver & Booker (1983) shows that the transition 
between hexagons and squares occurs a t  a Rayleigh number of x 2500 for a flow with 
a viscosity variation of 50. This behaviour was not observed in the experiments 
carried out above. The experimental procedure used by Oliver & Booker was 
to raise the Rayleigh number in increments of 100 with 4 h betwecn adjustments 
( d 2 / ~  = 24 min). Their small circular experimental apparatus did not allow the 
initiation of a regular hexagonal pattern so they could only study the evolution of 
the semiregular hexagons, produced a t  €2, from random initial conditions. In a 
similar experiment using the above apparatus and hexagons formed from random 
initial conditions, the transition to squares was not observed as the Rayleigh number 
was incremented slowly from 1800 to 4500 over a period of two weeks. This 
disagreement with Oliver & Booker would suggest that the circular boundaries of 
their apparatus had a large effect on the planform selected by the layer. 
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One particularly interesting feature of the combined diagram (figure 30) is that it 
reveals a small region in which squares, rolls and hexagons are all stable, the actual 
planform depending upon the initial pattern. The change between constant- and 
strongly variable-viscosity behaviour is seen to occur between a viscosity variation 
of 10 and 20. 
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